Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 342: 112019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38346563

RESUMO

DNA demethylation is involved in the regulation of flowering in plants, yet the underlying molecular mechanisms remain largely unexplored. The RELEASE OF SILENCING 1 (ROS1) gene, encoding a DNA demethyltransferase, plays key roles in many developmental processes. In this study, the ROS1 gene was isolated from Chrysanthemum lavandulifolium, where it was strongly expressed in the leaves, buds and flowers. Overexpression of the ClROS1 gene caused an early flowering phenotype in Arabidopsis thaliana. RNA-seq analysis of the transgenic plants revealed that differentially expressed genes (DEGs) were significantly enriched in the circadian rhythm pathway and that the positive regulator of flowering, CONSTANS (CO), was up-regulated. Additionally, whole-genome bisulphite sequencing (WGBS), PCR following methylation-dependent digestion with the enzyme McrBC, and bisulfite sequencing PCR (BSP) confirmed that the methylation level of the AtCO promoter was reduced, specifically in CG context. Overall, our results demonstrated that ClROS1 accelerates flowering by reducing the methylation level of the AtCO promoter. These findings clarify the epigenetic mechanism by which ClROS1-mediated DNA demethylation regulates flowering.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chrysanthemum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Chrysanthemum/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Flores/metabolismo , Metilação , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo
2.
BMC Plant Biol ; 23(1): 140, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36915063

RESUMO

BACKGROUND: Chrysanthemum is a popular ornamental plant worldwide. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors play an important role in everything from stress resistance to plant growth and development. However, the MYB family of chrysanthemums has not been the subject of a detailed bioinformatics and expression investigation. RESULTS: In this study, we examined 324 CnMYB transcription factors from Chrysanthemum nankingense genome data, which contained 122 Cn1R-MYB, 183 CnR2R3-MYB, 12 Cn3R-MYB, 2 Cn4R-MYB, and 5 atypical CnMYB. The protein motifs and classification of CnMYB transcription factors were analyzed. Among them, motifs 1, 2, 3, and 4 were found to encode the MYB DNA-binding domain in R2R3-MYB proteins, while in other-MYB proteins, the motifs 1, 2, 3, 4, 5, 6, 7, and 8 encode the MYB DNA-binding domain. Among all CnMYBs, 44 genes were selected due to the presence of CpG islands, while methylation is detected in three genes, including CnMYB9, CnMYB152, and CnMYB219. We analyzed the expression levels of each CnMYB gene in ray floret, disc floret, flower bud, leaf, stem, and root tissues. Based on phylogenetic analysis and gene expression analysis, three genes appeared likely to control cellulose and lignin synthesis in stem tissue, and 16 genes appeared likely to regulate flowering time, anther, pollen development, and flower color. Fifty-one candidate genes that may be involved in stress response were identified through phylogenetic, stress-responseve motif of promoter, and qRT-PCR analyses. According to genes expression levels under stress conditions, six CnMYB genes (CnMYB9, CnMYB172, CnMYB186, CnMYB199, CnMYB219, and CnMYB152) were identified as key stress-responsive genes. CONCLUSIONS: This research provides useful information for further functional analysis of the CnMYB gene family in chrysanthemums, as well as offers candidate genes for further study of cellulose and lignin synthesis, flowering traits, salt and drought stress mechanism.


Assuntos
Chrysanthemum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Lignina/metabolismo , Filogenia , DNA , Regulação da Expressão Gênica de Plantas
3.
BMC Genomics ; 24(1): 87, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829121

RESUMO

BACKGROUND: Facility cultivation is widely applied to meet the increasing demand for high yield and quality, with light intensity and light quality being major limiting factors. However, how changes in the light environment affect development and quality are unclear in garlic. When garlic seedlings are grown, they can also be exposed to blanching culture conditions of darkness or low-light intensity to ameliorate their appearance and modify their bioactive compounds and flavor. RESULTS: In this study, we determined the quality and transcriptomes of 14-day-old garlic and blanched garlic seedlings (green seedlings and blanched seedlings) to explore the mechanisms by which seedlings integrate light signals. The findings revealed that blanched garlic seedlings were taller and heavier in fresh weight compared to green garlic seedlings. In addition, the contents of allicin, cellulose, and soluble sugars were higher in the green seedlings. We also identified 3,872 differentially expressed genes between green and blanched garlic seedlings. The Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment for plant-pathogen interactions, phytohormone signaling, mitogen-activated protein kinase signaling, and other metabolic processes. In functional annotations, pathways related to the growth and formation of the main compounds included phytohormone signaling, cell wall metabolism, allicin biosynthesis, secondary metabolism and MAPK signaling. Accordingly, we identified multiple types of transcription factor genes involved in plant-pathogen interactions, plant phytohormone signaling, and biosynthesis of secondary metabolites among the differentially expressed genes between green and blanched garlic seedlings. CONCLUSIONS: Blanching culture is one facility cultivation mode that promotes chlorophyll degradation, thus changing the outward appearance of crops, and improves their flavor. The large number of DEGs identified confirmed the difference of the regulatory machinery under two culture system. This study increases our understanding of the regulatory network integrating light and darkness signals in garlic seedlings and provides a useful resource for the genetic manipulation and cultivation of blanched garlic seedlings.


Assuntos
Alho , Alho/genética , Reguladores de Crescimento de Plantas/metabolismo , Dissulfetos/metabolismo , Ácidos Sulfínicos , Transcriptoma , Plântula/genética , Regulação da Expressão Gênica de Plantas
4.
Sci Rep ; 12(1): 22310, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566291

RESUMO

Chrysanthemum (Chrysanthemum moriforlium Ramat.) is one of the most popular flowers worldwide, with very high ornamental and economic values. However, the limitations of available DNA molecular markers and the lack of full genomic sequences hinder the study of genetic diversity and the molecular breeding of chrysanthemum. Here, we developed simple sequence repeat (SSR) from the full-length transcriptome sequences of chrysanthemum cultivar 'Hechengxinghuo'. A total of 11,699 SSRs with mono-, di-, tri-, tetra-, penta- and hexanucleotide repeats were identified, of which eight out of eighteen SSR loci identified based on sixteen transcripts participated in carotenoid metabolism or anthocyanin synthesis were validated as polymorphic SSR markers. These SSRs were used to classify 117 chrysanthemum accessions with different flower colors at the DNA and cDNA levels. The results showed that four SSR markers of carotenoid metabolic pathway divided 117 chrysanthemum accessions into five groups at cDNA level and all purple chrysanthemum accessions were in the group III. Furthermore, the SSR marker CHS-3, LCYE-1 and 3MaT may be related to green color and the PSY-1b marker may be related to yellow color. Overall, our work may be provide a novel method for mining SSR markers associated with specific traits.


Assuntos
Chrysanthemum , Chrysanthemum/genética , Transcriptoma/genética , DNA Complementar/metabolismo , Repetições de Microssatélites/genética , Flores/genética , Flores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...